Programmed Bending Reveals Dynamic Mechanochemical Coupling in Supported Lipid Bilayers
نویسندگان
چکیده
In living cells, mechanochemical coupling represents a dynamic means by which membrane components are spatially organized. An extra-ordinary example of such coupling involves curvature-dependent polar localization of chemically-distinct lipid domains at bacterial poles, which also undergo dramatic reequilibration upon subtle changes in their interfacial environment such as during sporulation. Here, we demonstrate that such interfacially-triggered mechanochemical coupling can be recapitulated in vitro by simultaneous, real-time introduction of mechanically-generated periodic curvatures and attendant strain-induced lateral forces in lipid bilayers supported on elastomeric substrates. In particular, we show that real-time wrinkling of the elastomeric substrate prompts a dynamic domain reorganization within the adhering bilayer, producing large, oriented liquid-ordered domains in regions of low curvature. Our results suggest a mechanism in which interfacial forces generated during surface wrinkling and the topographical deformation of the bilayer combine to facilitate dynamic reequilibration prompting the observed domain reorganization. We anticipate this curvature-generating model system will prove to be a simple and versatile tool for a broad range of studies of curvature-dependent dynamic reorganizations in membranes that are constrained by the interfacial elastic and dynamic frameworks such as the cell wall, glycocalyx, and cytoskeleton.
منابع مشابه
Sensing lipid bilayer formation and expansion with a microfabricated cantilever array.
We show that cantilever array sensors can sense the formation of supported phospholipid bilayers on their surface and that they can monitor changes in mechanical properties of lipid bilayers. Supported lipid bilayers were formed on top of microfabricated cantilevers by vesicle fusion. The formation of bilayers led to a bending of the cantilevers of 70-590 nm comparable to a surface stress of 27...
متن کاملEffect of the HIV-1 fusion peptide on the mechanical properties and leaflet coupling of lipid bilayers.
The fusion peptide (FP) of the human immunodeficiency virus (HIV) is part of the N-terminus of the viral envelope glycoprotein gp41 and is believed to play an important role in the viral entry process. To understand the immediate effect of this peptide on the cell membrane, we have studied the influence of the synthetic FP sequence FP23 on the mechanical properties of model lipid bilayers. For ...
متن کاملLipid diffusion from single molecules of a labeled protein undergoing dynamic association with giant unilamellar vesicles and supported bilayers.
It is demonstrated that single-molecule tracking of a fluorescently labeled protein undergoing transient binding to model membranes presents a useful method of obtaining fluid properties. The labeled ACBP protein was tracked during its binding to free-standing giant unilamellar vesicles (GUVs) and supported bilayers prepared from the GUVs in the same environment. The analysis of images that are...
متن کاملEffect of physical parameters on the main phase transition of supported lipid bilayers.
Supported lipid bilayers composed of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) were assembled by the vesicle fusion technique on mica and studied by temperature-controlled atomic force microscopy. The role of different physical parameters on the main phase transition was elucidated. Both mixed (POPE/POPG 3:1) and pure POPE bilayers...
متن کاملBending stiffness of lipid bilayers. II. Spontaneous curvature of the monolayers
In the classical formulation of the elastic bending energy stored in a bilayer, the spontaneous curvatures of the monolayers enter via their sum. Accounting for the
متن کامل